Handling Nonpositive Curvature in a Limited Memory Steepest Descent Method

نویسندگان

  • Frank E. Curtis
  • Wei Guo
چکیده

We propose a limited memory steepest descent method for solving unconstrained optimization problems. As a steepest descent method, the step computation in each iteration only requires the evaluation of a gradient of the objective function and the calculation of a scalar stepsize. When employed to solve certain convex problems, our method reduces to a variant of the limited memory steepest descent method proposed by Fletcher (Math Prog 135(1–2):413–436, 2012), which means that, when the history length parameter is set to one, it reduces to a steepest descent method inspired by that proposed by Barzilai and Borwein (IMA J Num Anal 8:141-148, 1988). However, our method is novel in that we propose new algorithmic features for cases when nonpositive curvature is encountered. That is, our method is particularly suited for solving nonconvex problems. With a nonmonotone line search, we ensure global convergence for a variant of our method. We also illustrate with numerical experiments that our approach often yields superior performance when employed to solve nonconvex problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

Hybrid steepest-descent method with sequential and functional errors in Banach space

Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences ...

متن کامل

R-Linear Convergence of Limited Memory Steepest Descent

The limited memory steepest descent method (LMSD) proposed by Fletcher is an extension of the Barzilai-Borwein “two-point step size” strategy for steepest descent methods for solving unconstrained optimization problems. It is known that the Barzilai-Borwein strategy yields a method with an R-linear rate of convergence when it is employed to minimize a strongly convex quadratic. This paper exten...

متن کامل

A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations

In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...

متن کامل

A limited memory steepest descent method

The possibilities inherent in steepest descent methods have been considerably amplified by the introduction of the Barzilai-Borwein choice of step-size, and other related ideas. These methods have proved to be competitive with conjugate gradient methods for the minimization of large dimension unconstrained minimization problems. This paper suggests a method which is able to take advantage of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014